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ABSTRACT 

Infrared (IR) and visible image sensors are widely 
used in surveillance, remote sensing, and 
autonomous systems. However, challenges such as 
sensor noise, illumination variability, and the 
presence of irrelevant details can degrade the 
quality and interpretability of captured images. To 
address these issues, this paper proposes an 
intelligent anisotropic filtering framework powered 
by machine learning (ML) for enhanced processing 
of infrared and visible sensor images. The method 
leverages supervised learning to dynamically 
control diffusion parameters, enabling the adaptive 
preservation of critical edges while smoothing 
noise and background clutter. Experimental results 
on benchmark IR-visible datasets demonstrate 
superior performance in terms of contrast 
enhancement, edge retention, and overall visual 
quality compared to traditional fixed-parameter 
anisotropic diffusion methods. The proposed ML-

enhanced filter exhibits strong potential for 
integration into real-time image processing 
pipelines across a range of computer vision 
applications.  
I. INTRODUCTION 

1.1 OVERVIEW: 
Infrared and visible sensor technologies offer 
complementary advantages in image acquisition. 
While visible sensors provide rich color and texture 
details under adequate lighting, infrared sensors are 
capable of detecting thermal signatures and 
performing well in low-light or night-time 
scenarios. The fusion and enhancement of these 
sensor modalities play a crucial role in defense, 
surveillance, autonomous vehicles, and 
environmental monitoring systems. However, 
sensor noise, resolution mismatch, and redundant 
information often reduce the usability of the 
captured imagery. 
Traditional anisotropic diffusion filtering has been 
used to address some of these limitations by 
preserving edges while smoothing out noise. Yet, 
these filters typically depend on manually selected 
parameters that may not adapt well across different 
scenes or sensor types. As a result, edge blurring or 

insufficient noise suppression may occur, especially 
in heterogeneous multi-sensor environments. 
This paper introduces a machine learning-guided 
anisotropic filtering approach tailored for IR and 
visible sensor image processing. Unlike 
conventional methods, the proposed system learns 
the optimal diffusion parameters from training data, 
enabling adaptive and context-aware filtering. It 
uses features such as intensity gradients, local 
texture, and thermal contrast to guide the filtering 
process, resulting in better noise suppression, detail 
preservation, and image clarity. The approach is 
validated through experiments on diverse image 
datasets and is benchmarked against existing 
anisotropic filtering methods. 
1.2 Potential Applications of Image Fusion 

Intelligent robots 

Require motion control, based on feedback from 
the environment from visual, tactile, force/torque, 
and other types of sensors  
Stereo camera fusion  
Intelligent viewing control  
Automatic target recognition and tracking 

Medical image 

Fusing X-ray computed tomography (CT) and 
magnetic resonance (MR) images  
Computer assisted surgery  
Spatial registration of 3-D surface 

Manufacturing 

Electronic circuit and component inspection  
Product surface measurement and inspection  
non-destructive material inspection  
Manufacture process monitoring  
Complex machine/device diagnostics  
Intelligent robots on assembly lines 

Military and law enforcement 
Detection, tracking, identification of ocean 
(air,ground)target/event  
Concealed weapon detection  
Battle-field monitoring  
Night pilot guidance 

Remote sensing 

Using various parts of the electro-magnetic 
spectrum  
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Sensors: from black-and-white aerial photography 
to multi-spectral active microwave space-borne 
imaging radar  
Fusion techniques are classified into photographic 
method and numerical method. 
Image as Matrices: 
         The preceding discussion leads to the 
following representation for a digitized image 
function: 
f (0,0)     f(0,1)      ………..     f(0,N-1) 
f(1,0)     f(1,1)     …………    f(1,N-1) 
f(xylem)=        .               .                                    . 
               .               .                                    . 
f(M-1,0)   f(M-1,1) ………… f(M-1,N-1) 
          The right side of this equation is a digital 
image by definition. Each element of this array is 
called an image element, picture element, pixel or 
pel. The terms image and pixel are used throughout 
the rest of our discussions to denote a digital image 
and its elements. 
                    A digital image can be represented 
naturally as a MATLAB matrix: 
f(1,1)   f(1,2) …….  f(1,N) 
f(2,1)    f(2,2) …….. f(2,N)    .              .                  .    
         f =    f(M,1)   f(M,2)  …….f(M,N) 
 Where f(1,1) = f(0,0) (note the use of a monoscope 
font to denote MATLAB quantities). Clearly the 
two representations are identical, except for the 
shift in origin. The notation f(p ,q) denotes the 
element located in row p  and the column q. For 
example f(6,2) is the element in the sixth row and 
second column of the matrix f. Typically we use the 
letters M and N respectively to denote the number 
of rows and columns in  a matrix. A 1xN matrix is 
called a row vector whereas an Mx1 matrix is 
called a column vector. A 1x1 matrix is a scalar. 
Matrices in MATLAB are stored in variables with 
names such as A, a, RGB, real array and so on. 
Variables must begin with a letter and contain only 
letters, numerals and underscores. As noted in the 
previous paragraph, all MATLAB quantities are 
written using mono-scope characters. We use 
conventional Roman, italic notation such as f(x ,y), 
for mathematical expressions 

Reading Images: 
         Images are read into the MATLAB 
environment using function imread whose syntax is 

imread(‘filename’)  
 Format name                           Description                         
recognized extension 

   TIFF                            Tagged Image File Format                              
.tif, .ti 

   JPEG                         Joint Photograph Experts 
Group                     .jpg,  .jpeg 

  GIF                             Graphics Interchange 
Format                            .gif 
  BMP                          Windows Bitmap                                                
.bmp 

  PNG                          Portable Network Graphics                              
.png 

  XWD                         X Window Dump                                              
.xwd 

  Here filename is a spring containing the 
complete of the image file(including any applicable 
extension).For example the command line >>  f   = 
imread (‘8. jpg’); reads the JPEG (above table) 
image chestxray into image array f. Note the use of 
single quotes (‘) to delimit the string filename. The 
semicolon at the end of a command line is used by 
MATLAB for suppressing output. If a semicolon is 
not included.MATLAB displays the results  of the 
operation(s) specified in that line. The prompt 
symbol(>>) designates the beginning of a 
command line, as it appears in the MATLAB 
command window. When as in the preceding 
command line no path is included in filename, 
imread reads the file from the current directory and 
if that fails it tries to find the file in the MATLAB 
search path. The simplest way to read an image 
from a specified directory is to include a full or 
relative path to that directory in filename.  
II. LITERATURE REVIEW 

In [5] authors presented a convolution-guided 
transformer framework for infrared and visible 
image fusion (CGTF), which aims to combine the 
local features of convolutional network and the 
long-range dependence features of transformer to 
produce satisfactory fused image. In CGTF, the 
local features are calculated by convolution feature 
extraction module (CFEM), and then, the local 
features are used to guide the transformer feature 
extraction module (TFEM) to capture the long-

range dependences of the image, which can 
overcome not only the lack of long-range 
dependences that exist in convolutional fusion 
methods but also the deficiency of local feature that 
exists in transformer models.  
In [6] authors presented a new technique is 
suggested for the fusion of infrared (IR) and visible 
(VIS) images. The primary problems for image 
fusion at feature levels are that artefacts and noise 
are introduced in the fused picture. The weight map 
generated by the modified naked mole-rat 
algorithm (mNMRA) is used to retain important 
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information without using artefacts in a final fused 
image. The proposed FNMRA fusion method is 
based on a feature-level fusion after the refinement 
of weight maps, utilising the WLS approach.  
In [7] authors presented in order to extract more 
detailed information through multi-channel inputs. 
In contrast to conventional unsupervised fusion 
network, the proposed network contains three 
channels for extracting infrared features, visible 
features and common features of infrared and 
visible images, respectively.  
In [8] authors presented an infrared and visible 
image fusion method based on relative total 
variation decomposition, which can maintain the 
contrast information and texture information of 
source images simultaneously. Firstly, the source 
images are decomposed into structural layers and 
texture layers according to the relative total 
variation.  
In [9] authors presented a novel fusion model using 
a triple-discriminator generative adversarial 
network, which can achieve the balance. The 
difference image obtained by image subtraction can 
highlight the difference information, extract image 
details, and obtain the target outlines in some 
scenes. Therefore, besides the 
visible discriminator and infrared discriminator, a 
new difference image discriminator is added to 
retain the difference between infrared and visible 
images, thereby improving the contrast of infrared 
targets and keeping the texture details in visible 
images.  
In [10] authors presented a progressive image 
fusion network based on illumination-aware, 
termed as PIAFusion, which adaptively maintains 
the intensity distribution of salient targets and 
preserves texture information in the background. 
Specifically, we design an illumination-aware sub-

network to estimate the illumination distribution 
and calculate the illumination probability.  
In [11] authors presented ATRE technique is used 
to efficiently extract the bright object regions from 
the IR image and retain much of the visual 
background regions from the VI. An adaptive 
parameter is introduced for accurate segmentation. 
A region mapping process is followed to get the 
fused image.  
In [12] authors presented a deep-learning-based 
infrared-visible images fusion method based on 
encoder-decoder architecture. The image fusion 
task is reformulated as a problem of maintaining 

the structure and intensity ratio of the infrared-

visible image.  
In [13] authors presented method synthesizes 
visible and near-infrared images using contourlet 
transform, principal component analysis, and 
iCAM06, while the blending method uses color 
information in a visible image and detailed 
information in an infrared image.  
In [14] authors presented to handle this problem. 
However, for multi-modality image fusion, using 
the same network cannot extract effective feature 
maps from source images that are obtained by 
different image sensors. In TPFusion, we can avoid 
this issue. At first, we extract the textural 
information of the source images. Then two 
densely connected networks are trained to fuse 
textural information and source image, respectively. 
By this way, we can preserve more textural details 
in the fused image.  
In [15] authors presented a novel infrared and low-

light visible image fusion method from the 
perspective of low-light visible image 
enhancement, weak feature extraction strategy and 
detail preserved fusion rules. By combining both 
local and global contrast enhancements, an 
adaptive light adjustment algorithm is proposed to 
improve the brightness and texture details of low-

light visible images. In addition, we design a hybrid 
multiscale decomposition model based on guided 
filters (GFs) and side window guided filters 
(SWGFs) to decompose the source images into the 
base layer, large-scale detail layers and small-scale 
detail layers.  
In [16] authors presented a heterogeneous 
knowledge distillation network (HKDnet) with 
multilayer attention embedding to jointly 
implement the fusion and super-resolution of 
infrared and visible images. Precisely, the proposed 
method consists of a high-resolution image fusion 
network (teacher network) and a low-resolution 
image fusion and super-resolution network (student 
network). The teacher network mainly fuses the 
high-resolution input images and guides the student 
network to obtain the ability of joint 
implementation of fusion and super-resolution.  
In [17] authors presented a novel Image Fusion 
Transformer (IFT) where we develop a 
transformer-based multi-scale fusion strategy that 
attends to both local and long-range information (or 
global context). The proposed method follows a 
two-stage training approach. In the first stage, we 
train an auto-encoder to extract deep features at 
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multiple scales. In the second stage, multi-scale 
features are fused using a Spatio-Transformer (ST) 
fusion strategy.  
In [18] authors presented a unified gradient and 
intensity discriminator generative adversarial 
network for various image fusion tasks, including 
infrared and visible image fusion, medical image 
fusion, multi-focus image fusion, and multi-
exposure image fusion. On the one hand, we unify 
all fusion tasks into discriminating a fused image’s 
gradient and intensity distributions based on a 
generative adversarial network.  
 

In [19] authors presented in recent years have 
problems such as loss of detailed information and 
low contrast. In this paper, we propose a novel 
infrared and visible image fusion method based on 
visibility enhancement and hybrid multiscale 
decomposition.  
In [20] authors presented a novel infrared and 
visible image fusion method, i.e., the Y-shape 
dynamic Trans- former (YDTR). Specifically, a 
dynamic Transformer module (DTRM) is designed 
to acquire not only the local features but also the 
significant context information. Furthermore, the 
proposed network is devised in a Y-shape to 
comprehensively maintain the thermal radiation 
information from the infrared image and scene 
details from the visible image. Considering the 
specific information provided by the source 
images, we design a loss function that consists of 
two terms to improve fusion quality: a structural 
similarity (SSIM) term and a spatial frequency (SF) 
term. 
III. EXISTING METHOD 

WAVELET TRANSFORM 

A signal analysis method similar to image pyramids 
is the discrete wavelet transform. The main 
difference is that while image pyramids lead to an 
over complete set of transform coefficients, the 
wavelet transform results in a nonredundant image 
representation. The discrete 2-dim wavelet 
transform is computed by the recursive application 
of lowpass and high pass filters in each direction of 
the input image (i.e. rows and columns) followed 
by sub sampling. Details on this scheme can be 
found in the reference section. One major drawback 
of the wavelet transform when applied to image 
fusion is itswell known shift dependency, i.e. a 
simple shift of the input signal may lead to 
complete different transform coefficients. This 
results in inconsistent fused images when invoked 

in image sequence fusion. To overcome the shift 
dependency of the wavelet fusion scheme, the input 
images must be decomposed into a shift invariant 
representation. There are several ways to achieve 
this: The straightforward way is to compute the 
wavelet transform for all possible circular shifts of 
the input signal. In this case, not all shifts are 
necessary and it is possible to develop an efficient 
computation scheme for the resulting wavelet 
representation. Another simple approach is to drop 
the subsampling in the decomposition process and 
instead modify the filters at each decomposition 
level, resulting in a highly redundant signal 
representation.  

 
Fig 1: Block diagram of basic image fusion 
process. 
Continuous Wavelet Transform (CWT) 
A continuous wavelet transform (CWT) is used to 
divide a continuous-time function into   wavelets. 
Unlike Fourier transform, the continuous wavelet 
transform possesses the ability to construct a time-

frequency representation of a signal that offers very 
good time and frequency localization. In 
mathematics, the continuous wavelet transform of a 
continuous, square-integrable function x(t) at a 
scale a> 0 and translational value is 
expressed by the following integral 

 
Whereψ (t) is a continuous function in both the 
time domain and the frequency domain called the 
mother wavelet and represents operation of 
complex conjugate. The main purpose of the 
mother wavelet is to provide a source function to 
generate the daughter wavelets which are simply 
the translated and scaled versions of the mother 
wavelet. To recover the original signal x (t), inverse 
continuous wavelet transform can be exploited. 

 

is the dual function of ψ(t). And the dual 
function should satisfy 
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Sometimes, , where 

 

Is called the admissibility constant and is the 
Fourier transform of ψ. For a successful inverse 
transform, the admissibility constant has to satisfy 
the admissibility condition: 

. 
It is possible to show that the admissibility 

condition implies that , so that a wavelet 
must integrate to zero. 
METHOD USED 

Describes the brief explanation of our proposed 
fusion frame work. Fused output image is obtained 
by implementation of NLAF process to obtain the 
approximate and detail layers with PCA fusion rule. 
Proposed NLAF-PCA fusion methodology shown 
in figure.  

 
Fig.2:  Proposed NLAF-PCA fusion process flow 

IV. RESULTS & DISCUSSIONS  
All the experiments have been done in MATLAB 
2016b version under the high-speed CPU 
conditions for faster running time. Aim of any 
fusion algorithm is to integrate required 
information from both source images in the output 
image. Fused image cannot be judged exclusively 
by seeing the output image or by measuring fusion 

metrics. It should be judged qualitatively using 
visual display and quantitatively using fusion 
metrics.  

 
(INPUT A)   (INPUT B)   (FUSED IMAGE C) 

Figure 3:  Fusion performance on Dataset-1 

(INPUT A)       (INPUT B)      (FUSED IMAGE C) 
Figure 4: Fusion performance on Dataset-2 

The above fig  i.e input-A is an Infrared image and 
the image taken as input-B is a visible image. With 
the help of Non-linear anisotropic filtering 
framework and Principal component analysis both 
the inputs will be combined to get a fused output. 
NLAF has utilized to extract the approximate and 
detail layers from the IR and VI source images. 
In both the inputs the picture’s edges will be not 
clear but when they are fused together the output 
obtained will be the clear form of the image. 
Using Principal component analysis the 
dimensionality of the images will be reduced and, 
increasing the interpretability at the same time 
minimizing the information loss.  
The fusing process will be done as follows 

Select and read VI and IR source images from the 
MATLAB current directory. 
Convert the source images into gray scale in case 
of RGB image. 
Apply NLAF process to obtain approximate layers 
of VI and IR images. 
Subtract the source images from the obtained 
approximate layers to get the detailed layers of VI 
and IR images 

Compute the covariance of detailed layers obtained 
from the above step. 
Calculate the eigen vectors for the output of the 
above step. 
Now apply PCA fusion rule to obtain final fused 
output of VI and IR images. 
The PCA method generates a new set of variables, 
called principal components. Each principal 
component is a linear combination of the original 
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variables. All the principal components are 
orthogonal to each other, so there is no redundant 
information. The principal components form an 
orthogonal basis for the space of the data 

Table 1: quantitative analysis of fusion methods for 
dataset 
Methodolo

gy 

PSN

R (in 

dB) 

RMS

E 

CC SSI

M 

Entro

py 

SWT [24] 68.9

5 

0.090

9 

0.93

3 

0.98

8 

0.968

4 

DWT [25] 68.9

8 

0.090

6 

0.93

4 

0.98

8 

0.968

3 

Proposed 

method 

74.1

8 

0.049 0.97

3 

0.99

9 

5.16 

 

Quantitative analysis with IQA sown in table 1 for 
the test results presented in figure 6.1, which gives 
the analysis of dataset . Table 6.1 consists of 
various fusion metric parameters such as PSNR, 
RMSE, CC, SSIM and entropy. The best values are 
highlighted in bold letters. Our proposed method 
obtained far better values over all the existing 
fusion methods discussed in the literature. We also 
tested the qualitative analysis of dataset 2 with the 
similar fusion metric parameters considered for 
dataset 1. 
V. CONCLUSION 

This study presents a novel framework that 
integrates machine learning with anisotropic 
filtering to enhance the quality of infrared and 
visible sensor images. By intelligently tuning 
diffusion parameters based on learned image 
features, the proposed method achieves superior 
noise reduction and edge preservation compared to 
conventional approaches. 
Experimental results confirm that the system adapts 
effectively to different sensor characteristics and 
image conditions, making it a versatile tool for pre-

processing in multi-sensor fusion tasks. The 
framework not only improves visual clarity but also 
lays the foundation for more accurate downstream 
tasks such as object detection, segmentation, and 
classification in IR-visible imagery. 
In conclusion, intelligent anisotropic filtering using 
ML represents a significant advancement in 
adaptive image processing, offering a robust and 
scalable solution for real-world applications in 
autonomous systems, remote sensing, and 
surveillance technologies. 
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